추천교재

제목파이썬 라이브러리를 활용한 머신러닝2018-04-12






실제 문제에 대한 해법을 찾는 머신러닝 기술자를 위한 본격 머신러닝 입문서 


이 책은 머신러닝 알고리즘을 밑바닥부터 만드는 법을 다루지는 ‘않으며’, 대신 사이킷런과 다른 라이브러리에 이미 구현된 방대한 양의 모델을 사용하는 법에 집중합니다. 머신러닝과 인공지능에 대한 사전 지식이 필요 없는 입문서로, 파이썬과 사이킷런을 중심으로 머신러닝 애플리케이션을 성공적으로 만드는 모든 단계를 밟아갑니다. 여기서 소개하는 방법들은 상용 애플리케이션을 만드는 데이터 전문가는 물론 연구자와 과학자에게도 도움이 될 것입니다. 파이썬과 NumPy, matplotlib 라이브러리에 친숙하다면 이 책의 대부분을 이해할 수 있습니다.

 

 

주요 내용

  • 머신러닝의 기본 개념과 응용
  • 널리 사용되는 머신러닝 알고리즘의 장점과 단점
  • 머신러닝으로 처리한 데이터를 표현하는 방법
  • 모델 평가와 매개변수 튜닝을 위한 고급 방법
  • 체인 모델과 워크플로 캡슐화를 위한 파이프라인
  • 텍스트 데이터를 다루는 기술
  • 머신러닝과 데이터 과학 기술 향상을 위한 조언